skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hernández-Maldonado, Arturo J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. As emerging organic contaminants, siloxanes have severe impacts on the environment and human health. Simple linear siloxanes and derivates, trimethylsilanol (TMS), dimethylsilanediol (DMSD), monomethylsilanetriol (MMST), and dimethylsulfone (DMSO 2 ), are four persistent and common problematic compounds (PCs) from the hydroxylation and sulfuration of polydimethylsiloxanes. Herein, through a two-step computational process, namely Grand Canonical Monte Carlo (GCMC) simulations and machine learning (ML), we systematically screened 50 959 hypothetical pure-silica zeolites and identified 230 preeminent zeolites with excellent adsorption performances with all these four linear siloxanes and derivates. This work vividly demonstrates that the collocation of data-driven science and computational chemistry can greatly accelerate materials discovery and help solve the most challenging separation problems in environmental science. 
    more » « less